If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16.1t^2-120t+100=0
a = 16.1; b = -120; c = +100;
Δ = b2-4ac
Δ = -1202-4·16.1·100
Δ = 7960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-\sqrt{7960}}{2*16.1}=\frac{120-\sqrt{7960}}{32.2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+\sqrt{7960}}{2*16.1}=\frac{120+\sqrt{7960}}{32.2} $
| P=-25x-(10+250) | | 2^-x=0,125 | | 8r+4+-5=-15+3r | | 2^(-x)=0,125 | | b) | | 20+(2x+10)=180 | | 8x+-18=38 | | 450=3.14*r^2*18 | | 30+(2x+10)=180 | | 40+(2x+10)=180 | | 40+(2x+10=180 | | 10w=10,000,000,000 | | 44*3^x=11 | | A^2+b^2=73 | | (7x-6)=0.85(5x) | | X-65=y | | 7=4x/2×-3 | | 3x−11°=59 | | 6x^2+72x-170=-2 | | 100=14+4x | | 45x^2–20=0 | | 2x-27=7 | | 7p+5/5=8 | | (2x+1)^5=x-2 | | 12.5+a=18.1 | | 29.2x=22.4x | | 49xX=54 | | X^3+5x^2-3x-9=0 | | x-3/x-4+x-4/7=6-2x-1/35 | | 4^(3x+2)=15 | | 7y^2+17y=12 | | Q=253.141592653589793h |